Example

In this section we consider an example where some classical results cannot be applied. However, we can apply the Theorem 3.6. Indeed, consider the differential equation

$\displaystyle y^{(\mathrm{ iv})}-5y''+[\sin(t^q)+4]y=0,$   $\displaystyle \mbox{with $q\in]2,\infty[$,}$     (12)

which is of type (1.1) with $(a_0,a_1,a_2,a_3)=(4,0,-5,0)$ and $(r_0,r_1,r_2,r_3)(t)=(\sin(t^q),0,0,0).$ Then, the classical generalizations of Poincaré type theorems [26], the Levinson Theorem [9, Theorem 1.3.1], the Hartman-Wintner [9, Theorem 1.5.1] or the Eastham Theorem [9, Theorem 1.6.1] can not be applied to obtain the asymptotic behavior of (5.1). However, the hypotheses of Theorem 3.6 are satisfied see [7]. Then, the asymptotic formulas are given by

$\displaystyle y_1(t)$ $\displaystyle = e^{2t}\exp\Big(\frac{1}{12}\int_{t_0}^t
\Big\{\sin(s^q)- f_1(s)\Big\}ds\Big),$    
$\displaystyle y_2(t)$ $\displaystyle = e^{t}\exp\Big(-\frac{1}{6}\int_{t_0}^t
\Big\{\sin(s^q)- f_2(s)\Big\}ds\Big),$    
$\displaystyle y_3(t)$ $\displaystyle = e^{-t}\exp\Big(\frac{1}{6}\int_{t_0}^t
\Big\{\sin(s^q)- f_3(s)\Big\}ds\Big),$    
$\displaystyle y_4(t)$ $\displaystyle = e^{-2t}\exp\Big(-\frac{1}{12}\int_{t_0}^t
\Big\{\sin(s^q)- f_4(s)\Big\}ds\Big),$    

where

$\displaystyle f_1(t)$ $\displaystyle =
3(z'_1(s))^2+24z''_1(s)+4z_1(s)z''_1(s)
+6[z_1(s)]^2z'_1(s)
+8[z_1(s)]^3+[z_1(s)]^4$    
$\displaystyle f_2(t)$ $\displaystyle =
3(z'_2(s))^2+12z_2^2(s)+4z_2(s)z''_2(s)
+12[z_2(s)]^2z'_2(s)
+4[z_2(s)]^3+[z_2(s)]^4$    
$\displaystyle f_3(t)$ $\displaystyle =
3(z'_3(s))^2-6z_3^2(s)+4z_3(s)z''_3(s)
+6[z_3(s)]^2z'_3(s)
-4[z_3(s)]^3+[z_3(s)]^4$    
$\displaystyle f_4(t)$ $\displaystyle =
3(z'_4(s))^2-12z_4^2(s)+4z_4(s)z''_4(s)
+6[z_4(s)]^2z'_4(s)
-8[z_4(s)]^3+[z_4(s)]^4$    

and $z_i(t)$ satisfies the following asymptotic behavior

\begin{align*}z_{i}(t),z'_{i}(t),z''_{i}(t)
=
\left\{
\begin{array}{lll}
\displa...
...(s^p)\vert ds\Big),
&
& i=4,\quad \beta\in ]0,1].
\end{array}\right.\end{align*}